Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.232
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 212-218, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650131

RESUMO

Many cancers, including prostate cancer, have miRNAs with altered expression levels. These miRNAs play a pivotal role in regulating cancer initiation, invasion, and metastasis. miRNAs are an important component in cancer diagnosis and therapy and can play a key role as biomarkers or chemotherapeutic agents.  This investigation aimed to show the effects of miR-375 on PCa. In this project, target prediction tools and the KEGG pathway were performed to determine the potential targets of miR-375. Transfection was performed using miR-375 mimic and inhibitor. The actions of miRNAs on cell viability and migration were examined in PCa cells. In addition, qRT-PCR was executed to evaluate changes in gene expression in the PI3K-mTOR pathway. The analyses exposed that the upregulation of miR-375 repressed the viability at 48 h. While stimulation of miR-375 did not repress the migration, suppression of miR-375 reduced the migration at 24 and 48 hours. The predicted target TSC1 gene is not directly targeted by miR-375. Interestingly, in response to PIK3CA increase, mTOR expression was suppressed in all cells except LNCAP cells. In conclusion, miR-375 has anti-proliferative and cell migration inhibitory effects in prostate cancer. However, studies demonstrate that miR-375 may have tumor suppressor and oncogenic effects when considering cell molecular differences.


Assuntos
Movimento Celular , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias da Próstata , Serina-Treonina Quinases TOR , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Masculino , Movimento Celular/genética , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Sobrevivência Celular/genética , Proliferação de Células/genética , Transdução de Sinais/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética
2.
Gene ; 909: 148312, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38412945

RESUMO

BACKGROUND/AIM: Tuberous sclerosis complex (TSC) is a multi-system syndrome caused by loss-of-function mutation in TSC1 or TSC2. Most TSC patients present with cardiac rhabdomyoma or cortical tubers during fetal life, and the symptoms are not uniform as their age. The gene products of TSC1/2 are components of the TSC protein complex and are important role in the PI3K/AKT/mTOR (PAM) signaling pathway. Based on three members of a family with variable expressivity, the purpose of this study was to clarify the clinical features of TSC in different age groups and to analyze the genetic characteristics of TSC2 gene. METHODS: Clinical exome sequencing and co-segregation were used to identify a three-generation family with four affected individuals. HEK-293T cell model was constructed for subsequent experiments. Quantitative RT-PCR, western blotting, and subcellular localization were used to analyze the expression effect of TSC2 mutation. CCK-8 assay, wound healing assay, and cell cycle analysis were used to analyze the function effect of TSC2 mutation. RESULT: We identified a TSC family with heterozygous deletion of exon 4 in TSC2 by clinical exon sequencing. Sanger sequencing indicated that the affected individuals have 2541-bp deletion that encompassed exon 4 and adjacent introns. Deletion of exon 4 decreased the TSC2 mRNA and protein levels in HEK-293T cells, and activated the PI3K/AKT/mTOR pathway, thereby altering the cell cycle and promoting cell proliferation and migration. CONCLUSION: We confirmed the pathogenicity of the large deletion in TSC2 in a three- generations family.. Deletion of exon 4 of TSC2 affected cell proliferation, migration, and cell cycle via abnormal activation of the PAM pathway. This study evaluated the pathogenic effect of deletion of exon 4 of TSC2 and investigated the underlying mechanism.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética
3.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307625

RESUMO

Regulation of host miRNA expression is a contested node that controls the host immune response to mycobacterial infection. The host must counter subversive efforts of pathogenic mycobacteria to launch a protective immune response. Here, we examine the role of miR-126 in the zebrafish-Mycobacterium marinum infection model and identify a protective role for infection-induced miR-126 through multiple effector pathways. We identified a putative link between miR-126 and the tsc1a and cxcl12a/ccl2/ccr2 signalling axes resulting in the suppression of non-tnfa expressing macrophage accumulation at early M. marinum granulomas. Mechanistically, we found a detrimental effect of tsc1a expression that renders zebrafish embryos susceptible to higher bacterial burden and increased cell death via mTOR inhibition. We found that macrophage recruitment driven by the cxcl12a/ccl2/ccr2 signalling axis was at the expense of the recruitment of classically activated tnfa-expressing macrophages and increased cell death around granulomas. Together, our results delineate putative pathways by which infection-induced miR-126 may shape an effective immune response to M. marinum infection in zebrafish embryos.


Assuntos
Quimiocina CXCL12 , MicroRNAs , Infecções por Mycobacterium não Tuberculosas , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas de Peixe-Zebra , Animais , Granuloma/genética , Macrófagos , MicroRNAs/genética , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Peixe-Zebra , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Quimiocina CXCL12/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Mol Genet Genomic Med ; 12(3): e2330, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265426

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem disorder, caused by a loss-of-function of either TSC1 or TSC2 gene. However, in 10%-15% TSC patients there is no pathogenic variant identified in either TSC1 or TSC2 genes based on standard clinical testing. METHODS: In this study, genome sequencing was performed for families with clinical diagnosis of TSC with negative results from TSC1 and TSC2 single-gene tests. RESULTS: Herein, we report a family presenting a classical TSC phenotype with an unusual, complex structural variant involving the TSC1 gene: an intrachromosomal inverted insertion in the long arm of chromosome 9. We speculate that the inverted 9q33.3q34.13 region was inserted into the q31.2 region with the 3'-end of the breakpoint of the inversion being located within the TSC1 gene, resulting in premature termination of TSC1. CONCLUSIONS: In this study, we demonstrate the utility of genome sequencing for the identification of complex chromosomal rearrangement. Because the breakpoints are located within the deep intronic/intergenic region, this copy-neutral variant was missed by the TSC1 and TSC2 single-gene tests and contributed to an unknown etiology. Together, this finding suggests that complex structural variants may be underestimated causes for the etiology of TSC.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Mutação , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Cromossomos Humanos Par 9 , República da Coreia
5.
Epilepsia ; 65(2): 483-496, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38049961

RESUMO

OBJECTIVE: Tuberous sclerosis complex (TSC) is a genetic disorder, characterized by tumor formation in the brain and other organs, and severe neurological symptoms, such as epilepsy. Abnormal vascular endothelial growth factor (VEGF) expression may promote angiogenesis in kidney and lung tumors in TSC and has been identified in brain specimens from TSC patients, but the role of VEGF and vascular abnormalities in neurological manifestations of TSC is poorly defined. In this study, we investigated abnormalities in brain VEGF expression, cerebral blood vessel anatomy, and blood-brain barrier (BBB) structure and function in a mouse model of TSC. METHODS: Tsc1GFAP CKO mice were used to investigate VEGF expression and vascular abnormalities in the brain by Western blotting and immunohistochemical analysis of vascular and BBB markers. In vivo two-photon imaging was used to assess BBB permeability to normally impenetrable fluorescently labeled compounds. The effect of mechanistic target of rapamycin (mTOR) pathway inhibitors, VEGF receptor antagonists (apatinib), or BBB stabilizers (RepSox) was assessed in some of these assays, as well as on seizures by video-electroencephalography. RESULTS: VEGF expression was elevated in cortex of Tsc1GFAP CKO mice, which was reversed by the mTOR inhibitor rapamycin. Tsc1GFAP CKO mice exhibited increased cerebral angiogenesis and vascular complexity in cortex and hippocampus, which were reversed by the VEGF receptor antagonist apatinib. BBB permeability was abnormally increased and BBB-related tight junction proteins occludin and claudin-5 were decreased in Tsc1GFAP CKO mice, also in an apatinib- and RepSox-dependent manner. The BBB stabilizer (RepSox), but not the VEGF receptor antagonist (apatinib), decreased seizures and improved survival in Tsc1GFAP CKO mice. SIGNIFICANCE: Increased brain VEGF expression is dependent on mTOR pathway activation and promotes cerebral vascular abnormalities and increased BBB permeability in a mouse model of TSC. BBB modulation may affect epileptogenesis and represent a rational treatment for epilepsy in TSC.


Assuntos
Epilepsia , Esclerose Tuberosa , Humanos , Camundongos , Animais , Barreira Hematoencefálica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Convulsões , Serina-Treonina Quinases TOR/genética , Sirolimo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
BMC Med Genomics ; 16(1): 299, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990318

RESUMO

BACKGROUND: This research investigated the genetic characteristic of two Chinese families with keratoconus (KC). METHODS: For all people in the two families with KC, their history, clinical data, and peripheral blood were collected. One hundred healthy participants without KC and 112 sporadic KC patients were recruited as the controls. Whole exome sequencing of the genomic DNA and polymerase chain reaction were conducted for all the controls and family members to verify the variants. Functional analyses of the variants was performed using the software programs. RESULTS: A missense tuberous sclerosis 1 (TSC1) variant g.135797247A > G (c.622A > G, p.Ser208Gly) was detected in family 1. A single nucleotide polymorphism (SNP) rs761232139 (p.Gly235Arg) in aldehyde dehydrogenase 3 family member A1 (ALDH3A1) gene was detected in family 2. The variant c.622A > G in TSC1 and the SNP rs761232139 in ALDH3A1 were predicted as being probably damaging. CONCLUSIONS: Novel variant c.622A > G in TSC1 and SNP rs761232139 in ALDH3A1 have been detected in families with KC. These two findings may play a role in the pathogenesis of KC.


Assuntos
Ceratocone , Humanos , DNA/genética , Ceratocone/genética , Mutação de Sentido Incorreto , Reação em Cadeia da Polimerase , População do Leste Asiático , Proteína 1 do Complexo Esclerose Tuberosa/genética , Aldeído Desidrogenase/genética
7.
J Biol Chem ; 299(12): 105455, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949232

RESUMO

The Akt-Rheb-mTORC1 pathway plays a crucial role in regulating cell growth, but the mechanisms underlying the activation of Rheb-mTORC1 by Akt remain unclear. In our previous study, we found that CBAP was highly expressed in human T-ALL cells and primary tumors, and its deficiency led to reduced phosphorylation of TSC2/S6K1 signaling proteins as well as impaired cell proliferation and leukemogenicity. We also demonstrated that CBAP was required for Akt-mediated TSC2 phosphorylation in vitro. In response to insulin, CBAP was also necessary for the phosphorylation of TSC2/S6K1 and the dissociation of TSC2 from the lysosomal membrane. Here we report that CBAP interacts with AKT and TSC2, and knockout of CBAP or serum starvation leads to an increase in TSC1 in the Akt/TSC2 immunoprecipitation complexes. Lysosomal-anchored CBAP was found to override serum starvation and promote S6K1 and 4EBP1 phosphorylation and c-Myc expression in a TSC2-dependent manner. Additionally, recombinant CBAP inhibited the GAP activity of TSC2 complexes in vitro, leading to increased Rheb-GTP loading, likely due to the competition between TSC1 and CBAP for binding to the HBD domain of TSC2. Overexpression of the N26 region of CBAP, which is crucial for binding to TSC2, resulted in a decrease in mTORC1 signaling and an increase in TSC1 association with the TSC2/AKT complex, ultimately leading to increased GAP activity toward Rheb and impaired cell proliferation. Thus, we propose that CBAP can modulate the stability of TSC1-TSC2 as well as promote the translocation of TSC1/TSC2 complexes away from lysosomes to regulate Rheb-mTORC1 signaling.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana , Proteínas Proto-Oncogênicas c-akt , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Humanos , Proliferação de Células , Guanosina Trifosfato/metabolismo , Imunoprecipitação , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
8.
Immunity ; 56(11): 2555-2569.e5, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967531

RESUMO

Tumors develop by invoking a supportive environment characterized by aberrant angiogenesis and infiltration of tumor-associated macrophages (TAMs). In a transgenic model of breast cancer, we found that TAMs localized to the tumor parenchyma and were smaller than mammary tissue macrophages. TAMs had low activity of the metabolic regulator mammalian/mechanistic target of rapamycin complex 1 (mTORC1), and depletion of negative regulator of mTORC1 signaling, tuberous sclerosis complex 1 (TSC1), in TAMs inhibited tumor growth in a manner independent of adaptive lymphocytes. Whereas wild-type TAMs exhibited inflammatory and angiogenic gene expression profiles, TSC1-deficient TAMs had a pro-resolving phenotype. TSC1-deficient TAMs relocated to a perivascular niche, depleted protein C receptor (PROCR)-expressing endovascular endothelial progenitor cells, and rectified the hyperpermeable blood vasculature, causing tumor tissue hypoxia and cancer cell death. TSC1-deficient TAMs were metabolically active and effectively eliminated PROCR-expressing endothelial cells in cell competition experiments. Thus, TAMs exhibit a TSC1-dependent mTORC1-low state, and increasing mTORC1 signaling promotes a pro-resolving state that suppresses tumor growth, defining an innate immune tumor suppression pathway that may be exploited for cancer immunotherapy.


Assuntos
Células Progenitoras Endoteliais , Proteínas Supressoras de Tumor , Animais , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Macrófagos Associados a Tumor/metabolismo , Células Progenitoras Endoteliais/metabolismo , Receptor de Proteína C Endotelial , Alvo Mecanístico do Complexo 1 de Rapamicina , Neovascularização Patológica , Mamíferos
9.
Pediatr Neurol ; 148: 14-16, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37634327

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder that can involve multiple organ systems. Diagnosis is based on independent clinical diagnostic criteria and genetic diagnostic criteria (pathogenic variants on TSC1 and TSC2 genes). To make a definitive diagnosis can be especially difficult in oligosymptomatic or asymptomatic patients and in those patients with genetic variants of uncertain significance (VUS). Early diagnosis and lifelong surveillance are paramount to avoid morbidity and potentially life-threatening complications. To increase diagnostic sensibility, less known manifestations of TSC can be helpful. Herein we show a case in which SBLs were used as a diagnostic clue to help diagnose three generations of oligosymptomatic TSC carrying a VUS in TSC1. SBLs are commonly detected in imaging studies of patients with TSC and have been recently included as a minor clinical diagnostic criterion. Clinicians and radiologists should be aware of their significance as they can be mistaken with osteoblastic metastases.


Assuntos
Doenças Ósseas , Esclerose Tuberosa , Humanos , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/genética , Mutação
10.
J Mol Diagn ; 25(9): 692-701, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356622

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder characterized by the presence of hamartomas in multiple organs. At the molecular level, the disease is caused by pathogenic variants in the TSC1 and TSC2 genes, and only 10% to 25% of clinically diagnosed patients remain negative after multiplex ligation-dependent probe amplification and exon sequencing of both genes. Here, to improve the molecular diagnosis of TSC, we developed an integral approach that includes multiplex ligation-dependent probe amplification and deep-coverage next-generation sequencing of the entire TSC1 and TSC2 genes, along with an adapted bioinformatic pipeline to detect variants at low allele frequencies (>1%). Using this workflow, the molecular cause was identified in 29 of 42 patients with TSC, describing here, for the first time, 12 novel pathogenic variants in TSC genes. These variants included seven splicing variants, five of which were studied at the cDNA level, determining their effect on splicing. In addition, 8 of the 29 pathogenic variants were detected in mosaicism, including four patients with previous negative study results who presented extremely low mosaic variants (allele frequency, <16%). We demonstrate that this integral approach allows the molecular diagnosis of patients with TSC and improves the conventional one by adapting the technology to the detection of low-frequency mosaics.


Assuntos
Mosaicismo , Esclerose Tuberosa , Humanos , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Mutação , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética
11.
Stem Cell Res ; 70: 103129, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271041

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by neuropsychiatric symptoms and multiple dysplastic organ lesions, caused by loss of function mutations in either TSC1 or TSC2. The peripheral blood mononuclear cells (PBMCs) from a patient carrying mosaic nonsense mutation of TSC2 gene were reprogrammed using the CytoTune-iPS2.0 Sendai Reprogramming Kit. The human induced pluripotent cell (hiPSC) lines with the mutation and without the mutation were established. The heterozygous nonsense mutation in TSC2 will cause the truncated protein, which is known to associated with TSC. The established hiPSC lines will enable proper in vitro disease modelling of TSC.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esclerose Tuberosa , Humanos , Códon sem Sentido , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteínas Supressoras de Tumor/genética , Células-Tronco Pluripotentes Induzidas/patologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Leucócitos Mononucleares/patologia , Proteína 1 do Complexo Esclerose Tuberosa/genética , Mutação/genética
12.
Am J Hum Genet ; 110(6): 979-988, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141891

RESUMO

Tuberous sclerosis complex (TSC) is a neurogenetic disorder due to loss-of-function TSC1 or TSC2 variants, characterized by tumors affecting multiple organs, including skin, brain, heart, lung, and kidney. Mosaicism for TSC1 or TSC2 variants occurs in 10%-15% of individuals diagnosed with TSC. Here, we report comprehensive characterization of TSC mosaicism by using massively parallel sequencing (MPS) of 330 TSC samples from a variety of tissues and fluids from a cohort of 95 individuals with mosaic TSC. TSC1 variants in individuals with mosaic TSC are much less common (9%) than in germline TSC overall (26%) (p < 0.0001). The mosaic variant allele frequency (VAF) is significantly higher in TSC1 than in TSC2, in both blood and saliva (median VAF: TSC1, 4.91%; TSC2, 1.93%; p = 0.036) and facial angiofibromas (median VAF: TSC1, 7.7%; TSC2 3.7%; p = 0.004), while the number of TSC clinical features in individuals with TSC1 and TSC2 mosaicism was similar. The distribution of mosaic variants across TSC1 and TSC2 is similar to that for pathogenic germline variants in general TSC. The systemic mosaic variant was not present in blood in 14 of 76 (18%) individuals with TSC, highlighting the value of analysis of multiple samples from each individual. A detailed comparison revealed that nearly all TSC clinical features are less common in individuals with mosaic versus germline TSC. A large number of previously unreported TSC1 and TSC2 variants, including intronic and large rearrangements (n = 11), were also identified.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa/genética , Mutação , Proteína 1 do Complexo Esclerose Tuberosa/genética , Fenótipo
13.
J Proteomics ; 283-284: 104928, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207814

RESUMO

Tuberous sclerosis complex (TSC) is a rare, multisystem genetic disorder that leads to the development of benign tumors in multiple organs and neurological symptoms. TSC clinical manifestations show a great heterogenicity, with most patients presenting severe neuropsychiatric and neurological disorders. TSC is caused by loss-of-function mutations in either TSC1 or TSC2 genes, leading to overexpression of the mechanistic target of rapamycin (mTOR) and, consequently, abnormal cellular growth, proliferation and differentiation as well as to cell migration defects. Beside the growing interest, TSC remains a disorder poorly understood, with limited perspectives in the field of therapeutic strategies. Here we used murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene as a TSC model to unravel novel molecular aspects of the pathophysiology of this disease. 2D-DIGE-based proteomic analysis detected 55 differently represented spots in Tsc1-deficient cells, compared to wild-type counterparts, which were associated with 36 protein entries after corresponding trypsinolysis and nanoLC-ESI-Q-Orbitrap-MS/MS analysis. Proteomic results were validated using various experimental approaches. Bioinformatics associated differently represented proteins with oxidative stress and redox pathways, methylglyoxal biosynthesis, myelin sheath, protein S-nitrosylation and carbohydrate metabolism. Because most of these cellular pathways have already been linked to TSC features, these results were useful to clarify some molecular aspects of TSC etiopathogenesis and suggested novel promising therapeutic protein targets. SIGNIFICANCE: Tuberous Sclerosis Complex (TSC) is a multisystemic disorder caused by inactivating mutations of TSC1 or TSC2 genes, which induce overactivation of the mTOR component. The molecular mechanisms underlying the pathogenesis of TSC remain unclear, probably due to complexity of mTOR signaling network. To have a picture of protein abundance changes occurring in TSC disorder, murine postnatal subventricular zone (SVZ) neural stem progenitor cells (NSPCs) deficient of Tsc1 gene were used as a model of disease. Thus, Tsc1-deficient SVZ NSPCs and wild-type cells were comparatively evaluated by proteomics. This analysis evidenced changes in the abundance of proteins involved in oxidative/nitrosative stress, cytoskeleton remodelling, neurotransmission, neurogenesis and carbohydrate metabolism. These proteins might clarify novel molecular aspects of TSC etiopathogenesis and constitute putative molecular targets for novel therapeutic management of TSC-related disorders.


Assuntos
Células-Tronco Neurais , Esclerose Tuberosa , Camundongos , Humanos , Animais , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Serina-Treonina Quinases TOR/metabolismo
14.
Neurology ; 101(2): 78-82, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37015817

RESUMO

OBJECTIVE: To describe a child meeting diagnostic criteria for tuberous sclerosis complex (TSC) carrying a pathogenic somatic variant in RHEB, but no pathogenic variants in the 2 known TSC genes, TSC1 or TSC2. METHODS: We present the clinical and imaging findings in a child presenting with drug-resistant focal seizures and multiple cortical tubers, a subependymal giant cell astrocytoma and multiple subependymal nodules in 1 cerebral hemisphere. Targeted panel sequencing and exome sequencing were performed on genomic DNA derived from blood and resected tuber tissue. RESULTS: The child satisfied clinical diagnostic criteria for TSC, having 3 major features, only 2 of which are required for diagnosis. Genetic testing did not identify pathogenic variants or copy number variations in TSC1 or TSC2 but identified a pathogenic somatic RHEB variant (NM_005614.4:c.104_105delACinsTA [p.Tyr35Leu]) in the cortical tuber. DISCUSSION: RHEB is a partner of the TSC1/2 complex in the mechanistic target of rapamycin pathway. Somatic variants in RHEB are associated with focal cortical dysplasia and hemimegalencephaly. We propose that variants in RHEB may explain some of the genetically undiagnosed TSC cases and may be the third gene for TSC, or TSC3.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Criança , Proteínas Supressoras de Tumor/genética , Mutação/genética , Esclerose Tuberosa/complicações , Esclerose Tuberosa/diagnóstico por imagem , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Variações do Número de Cópias de DNA , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética
15.
J Am Soc Nephrol ; 34(7): 1135-1149, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37060140

RESUMO

The phenotypic diversity of tuberous sclerosis complex (TSC) kidney pathology is enigmatic. Despite a well-established monogenic etiology, an incomplete understanding of lesion pathogenesis persists. In this review, we explore the question: How do TSC kidney lesions arise? We appraise literature findings in the context of mutational timing and cell-of-origin. Through a developmental lens, we integrate the critical results from clinical studies, human specimens, and genetic animal models. We also review novel insights gleaned from emerging organoid and single-cell sequencing technologies. We present a new model of pathogenesis which posits a phenotypic continuum, whereby lesions arise by mutagenesis during development from variably timed second-hit events. This model can serve as a conceptual framework for testing hypotheses of TSC lesion pathogenesis, both in the kidney and in other affected tissues.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Animais , Humanos , Proteínas Supressoras de Tumor/genética , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteína 2 do Complexo Esclerose Tuberosa , Proteína 1 do Complexo Esclerose Tuberosa/genética , Rim/patologia
16.
Hepatology ; 78(2): 503-517, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36999531

RESUMO

BACKGROUND AND AIMS: The aim of the study was to investigate the role and mechanisms of tuberous sclerosis complex 1 (TSC1) and mechanistic target of rapamycin complex 1 (mTORC1) in alcohol-associated liver disease. APPROACH AND RESULTS: Liver-specific Tsc1 knockout (L- Tsc1 KO) mice and their matched wild-type mice were subjected to Gao-binge alcohol. Human alcoholic hepatitis (AH) samples were also used for immunohistochemistry staining, western blot, and quantitative real-time PCR (q-PCR) analysis. Human AH and Gao-binge alcohol-fed mice had decreased hepatic TSC1 and increased mTORC1 activation. Gao-binge alcohol markedly increased liver/body weight ratio and serum alanine aminotransferase levels in L- Tsc1 KO mice compared with Gao-binge alcohol-fed wild-type mice. Results from immunohistochemistry staining, western blot, and q-PCR analysis revealed that human AH and Gao-binge alcohol-fed L- Tsc1 KO mouse livers had significantly increased hepatic progenitor cells, macrophages, and neutrophils but decreased HNF4α-positive cells. Gao-binge alcohol-fed L- Tsc1 KO mice also developed severe inflammation and liver fibrosis. Deleting Tsc1 in cholangiocytes but not in hepatocytes promoted cholangiocyte proliferation and aggravated alcohol-induced ductular reactions, fibrosis, inflammation, and liver injury. Pharmacological inhibition of mTORC1 partially reversed hepatomegaly, ductular reaction, fibrosis, inflammatory cell infiltration, and liver injury in alcohol-fed L- Tsc1 KO mice. CONCLUSIONS: Our findings indicate that persistent activation of mTORC1 due to the loss of cholangiocyte TSC1 promotes liver cell repopulation, ductular reaction, inflammation, fibrosis, and liver injury in Gao-binge alcohol-fed L- Tsc1 KO mice, which phenocopy the pathogenesis of human AH.


Assuntos
Hepatite Alcoólica , Hepatopatias Alcoólicas , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteína 1 do Complexo Esclerose Tuberosa , Animais , Humanos , Camundongos , Etanol , Fibrose , Hepatite Alcoólica/patologia , Inflamação/patologia , Fígado/patologia , Hepatopatias Alcoólicas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo
17.
Hum Pathol ; 133: 136-152, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36894367

RESUMO

Renal manifestations in patients with tuberous sclerosis complex (TSC) include cysts, angiomyolipoma, and renal cell carcinoma. Unlike many hereditary predisposition syndromes, the spectrum of renal tumors in TSC patients (including both angiomyolipoma and renal cell carcinoma) is broad, with significant morphologic heterogeneity. An improved understanding of histopathologic findings in TSC patients and associated clinicopathologic correlates has significant implications not just in establishing a diagnosis of TSC, but also in the recognition of sporadic tumors occurring secondary to somatic alterations of TSC1/TSC2/MTOR pathway genes and accurate prognostication. In this review, we have discussed issues relevant to clinical management based on histopathologic findings in nephrectomy specimens from patients with TSC. This includes discussions related to screening for TSC, diagnosis of PKD1/TSC2 contiguous gene deletion syndrome, the morphologic spectrum of angiomyolipoma and renal epithelium-derived neoplasia, including the risk of disease progression.


Assuntos
Angiomiolipoma , Carcinoma de Células Renais , Cistos , Hamartoma , Neoplasias Renais , Esclerose Tuberosa , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/cirurgia , Angiomiolipoma/genética , Angiomiolipoma/cirurgia , Esclerose Tuberosa/complicações , Esclerose Tuberosa/cirurgia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Neoplasias Renais/genética , Neoplasias Renais/cirurgia , Neoplasias Renais/metabolismo , Nefrectomia
18.
Hum Genomics ; 17(1): 4, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732866

RESUMO

BACKGROUND: Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is associated with neurological symptoms, including autism spectrum disorder. Tuberous sclerosis complex is caused by pathogenic germline mutations of either the TSC1 or TSC2 gene, but somatic mutations were identified in both genes, and the combined effects of TSC1 and TSC2 mutations have been unknown. METHODS: The present study investigated social behaviors by the social interaction test and three-chambered sociability tests, effects of rapamycin treatment, and gene expression profiles with a gene expression microarray in Tsc1 and Tsc2 double heterozygous mutant (TscD+/-) mice. RESULTS: TscD+/- mice exhibited impairments in social behaviors, and the severity of impairments was similar to Tsc2+/- mice rather than Tsc1+/- mice. Impairments in social behaviors were rescued by rapamycin treatment in all mutant mice. Gene expression profiles in the brain were greatly altered in TscD+/- mice more than in Tsc1+/- and Tsc2+/- mice. The gene expression changes compared with wild type (WT) mice were similar between TscD+/- and Tsc2+/- mice, and the overlapping genes whose expression was altered in mutant mice compared with WT mice were enriched in the neoplasm- and inflammation-related canonical pathways. The "signal transducer and activator of transcription 3, interferon regulatory factor 1, interferon regulatory factor 4, interleukin-2R α chain, and interferon-γ" signaling pathway, which is initiated from signal transducer and activator of transcription 4 and PDZ and LIM domain protein 2, was associated with impairments in social behaviors in all mutant mice. LIMITATIONS: It is unclear whether the signaling pathway also plays a critical role in autism spectrum disorders not caused by Tsc1 and Tsc2 mutations. CONCLUSIONS: These findings suggest that TSC1 and TSC2 double mutations cause autistic behaviors similarly to TSC2 mutations, although significant changes in gene expression were attributable to the double mutations. These findings contribute to the knowledge of genotype-phenotype correlations in TSC and suggest that mutations in both the TSC1 and TSC2 genes act in concert to cause neurological symptoms, including autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Esclerose Tuberosa , Camundongos , Animais , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Mutação , Sirolimo
19.
Genes (Basel) ; 14(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36833359

RESUMO

Tuberous sclerosis complex (TSC) is a rare autosomal dominant neurocutaneous syndrome. It is manifested mainly in cutaneous lesions, epilepsy and the emergence of hamartomas in several tissues and organs. The disease sets in due to mutations in two tumor suppressor genes: TSC1 and TSC2. The authors present the case of a 33-year-old female patient registered with the Bihor County Regional Center of Medical Genetics (RCMG) since 2021 with a TSC diagnosis. She was diagnosed with epilepsy at eight months old. At 18 years old she was diagnosed with tuberous sclerosis and was referred to the neurology department. Since 2013 she has been registered with the department for diabetes and nutritional diseases with a type 2 diabetes mellitus (T2DM) diagnosis. The clinical examination revealed: growth delay, obesity, facial angiofibromas, sebaceous adenomas, depigmented macules, papillomatous tumorlets in the thorax (bilateral) and neck, periungual fibroma in both lower limbs, frequent convulsive seizures; on a biological level, high glycemia and glycated hemoglobin levels. Brain MRI displayed a distinctive TS aspect with five bilateral hamartomatous subependymal nodules associating cortical/subcortical tubers with the frontal, temporal and occipital distribution. Molecular diagnosis showed a pathogenic variant in the TSC1 gene, exon 13, c.1270A>T (p. Arg424*). Current treatment targets diabetes (Metformin, Gliclazide and the GLP-1 analog semaglutide) and epilepsy (Carbamazepine and Clonazepam). This case report presents a rare association between type 2 diabetes mellitus and Tuberous Sclerosis Complex. We suggest that the diabetes medication Metformin may have positive effects on both the progression of the tumor associated with TSC and the seizures specific to TSC and we assume that the association of TSC and T2DM in the presented cases is accidental, as there are no similar cases reported in the literature.


Assuntos
Diabetes Mellitus Tipo 2 , Epilepsia , Metformina , Esclerose Tuberosa , Feminino , Humanos , Adulto , Lactente , Adolescente , Proteínas Supressoras de Tumor/genética , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteína 1 do Complexo Esclerose Tuberosa , Diabetes Mellitus Tipo 2/complicações , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Epilepsia/complicações , Convulsões , Serina-Treonina Quinases TOR , Transdução de Sinais
20.
Differentiation ; 130: 43-50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36608575

RESUMO

Tuberin is a member of a large protein complex, Tuberous Sclerosis Complex (TSC), and acts as a sensor for nutrient status regulating protein synthesis and cell cycle progression. Mutations in the Tuberin gene, TSC2, permits the formation of tumors that can lead to developmental defects in many organ systems, including the central nervous system. Tuberin is expressed in the brain throughout development and levels of Tuberin have been found to decrease during neuronal differentiation in cell lines in vitro. Our current work investigates the levels of Tuberin at two stages of embryonic development in vivo, and we study the mRNA and protein levels during a time course using immortalized cell lines in vitro. Our results show that total Tuberin levels are tightly regulated through developmental stages in the embryonic brain. At a cell biology level, we show that Tuberin levels are higher when cells are cultured as neurospheres, and knockdown of Tuberin results in a reduction in the number of neurospheres. This functional data supports the hypothesis that Tuberin is an important regulator of stemness and the reduction of Tuberin levels might support functional differentiation in the central nervous system. Understanding how Tuberin expression is regulated throughout neural development is essential to fully comprehend the role of this protein in several developmental and neural pathologies.


Assuntos
Proteínas Repressoras , Proteínas Supressoras de Tumor , Feminino , Humanos , Gravidez , Encéfalo/metabolismo , Encéfalo/patologia , Diferenciação Celular , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...